Characterization of Positive Invariance of Quadratic Convex Sets for Discrete-Time Systems Using Optimization Approaches

نویسندگان

چکیده

A positively invariant set is an important concept in dynamical systems. The study of conditions for discrete-time systems one interesting topic both theoretical studies and practical applications research. Different methods characterizing the invariance different types sets have been established. For example, ellipsoidal Lorenz cone, which are quadratic convex sets, properties from a polyhedral set. This paper presents optimization method dual to characterize positive cone. proposed applicable linear nonlinear Using programming induced norm, condition problems transformed into problems, also used give equivalent forms. Fewer results on cones can be found than other type set; this fulfills problem. In addition, provide more options checking perspective optimization. effectiveness demonstrated by numerical examples.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal Finite-time Control of Positive Linear Discrete-time Systems

This paper considers solving optimization problem for linear discrete time systems such that closed-loop discrete-time system is positive (i.e., all of its state variables have non-negative values) and also finite-time stable. For this purpose, by considering a quadratic cost function, an optimal controller is designed such that in addition to minimizing the cost function, the positivity proper...

متن کامل

Practical Robust Positive Invariance for Large-Scale Discrete Time Systems

This note introduces practical set invariance notions for physically interconnected, discrete–time systems, subject to additive but bounded disturbances. We offer a concept which allows us to investigate invariance properties for each of the subsystems separately and, hence, to study invariance properties of the overall system in a sensible and decentralized way. The analysis part makes use of ...

متن کامل

An Interior Point Algorithm for Solving Convex Quadratic Semidefinite Optimization Problems Using a New Kernel Function

In this paper, we consider convex quadratic semidefinite optimization problems and provide a primal-dual Interior Point Method (IPM) based on a new kernel function with a trigonometric barrier term. Iteration complexity of the algorithm is analyzed using some easy to check and mild conditions. Although our proposed kernel function is neither a Self-Regular (SR) fun...

متن کامل

analysis of ruin probability for insurance companies using markov chain

در این پایان نامه نشان داده ایم که چگونه می توان مدل ریسک بیمه ای اسپیرر اندرسون را به کمک زنجیره های مارکوف تعریف کرد. سپس به کمک روش های آنالیز ماتریسی احتمال برشکستگی ، میزان مازاد در هنگام برشکستگی و میزان کسری بودجه در زمان وقوع برشکستگی را محاسبه کرده ایم. هدف ما در این پایان نامه بسیار محاسباتی و کاربردی تر از روش های است که در گذشته برای محاسبه این احتمال ارائه شده است. در ابتدا ما نشا...

15 صفحه اول

Controlled Invariance of Discrete Time Systems

An algorithm for computing the maximal controlled invari ant set and the least restrictive controller for discrete time systems is proposed We show how the algorithm can be encoded using quanti er elimination which leads to a semi decidability result for de nable systems For discrete time linear systems with all sets speci ed by lin ear inequalities a more e cient implementation is proposed usi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics

سال: 2023

ISSN: ['2227-7390']

DOI: https://doi.org/10.3390/math11112419